Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Environ Res Public Health ; 20(1)2022 12 29.
Article in English | MEDLINE | ID: covidwho-2246783

ABSTRACT

While personal protective equipment (PPE) protects healthcare workers from viruses, it also increases the risk of heat stress. In this study, the effects of environmental heat stress, the insulation of the PPE inner-garment layer, and the personal cooling strategy on the physiological and perceptual responses of PPE-clad young college students were evaluated. Three levels of wet bulb globe temperatures (WBGT = 15 °C, 28 °C, and 32 °C) and two types of inner garments (0.37 clo and 0.75 clo) were chosen for this study. In an uncompensable heat stress environment (WBGT = 32 °C), the effects of two commercially available personal cooling systems, including a ventilation cooling system (VCS) and an ice pack cooling system (ICS) on the heat strain mitigation of PPE-clad participants were also assessed. At WBGT = 15 °C with 0.75 clo inner garments, mean skin temperatures were stabilized at 31.2 °C, Hskin was 60-65%, and HR was about 75.5 bpm, indicating that the working scenario was on the cooler side. At WBGT = 28 °C, Tskin plateaued at approximately 34.7 °C, and the participants reported "hot" thermal sensations. The insulation reduction in inner garments from 0.75 clo to 0.37 clo did not significantly improve the physiological thermal comfort of the participants. At WBGT = 32 °C, Tskin was maintained at 35.2-35.7 °C, Hskin was nearly 90% RH, Tcore exceeded 37.1 °C, and the mean HR was 91.9 bpm. These conditions indicated that such a working scenario was uncompensable, and personal cooling to mitigate heat stress was required. Relative to that in NCS (no cooling), the mean skin temperatures in ICS and VCS were reduced by 0.61 °C and 0.22 °C, respectively, and the heart rates were decreased by 10.7 and 8.5 bpm, respectively. Perceptual responses in ICS and VCS improved significantly throughout the entire field trials, with VCS outperforming ICS in the individual cooling effect.


Subject(s)
Body Temperature Regulation , Heat Stress Disorders , Humans , Protective Clothing , Cold Temperature , Temperature , Skin Temperature , Heat Stress Disorders/prevention & control , Hot Temperature
2.
Int J Environ Res Public Health ; 19(13)2022 07 04.
Article in English | MEDLINE | ID: covidwho-1917482

ABSTRACT

Many workers are exposed to the effects of heat and often to extreme temperatures. Heat stress has been further aggravated during the COVID-19 pandemic by the use of personal protective equipment to prevent SARS-CoV-2 infection. However, workers' risk perception of heat stress is often low, with negative effects on their health and productivity. The study aims to identify workers' needs and gaps in knowledge, suggesting the adaptation of measures that best comply with the needs of both workers and employers. A cross-sectional online questionnaire survey was conducted in Italy in the hottest months of 2020 (June-October) through different multimedia channels. The data collected were analyzed using descriptive statistics; analytical tests and analysis of variance were used to evaluate differences between groups of workers. In total, 345 questionnaires were collected and analyzed. The whole sample of respondents declared that heat is an important contributor to productivity loss and 83% of workers did not receive heat warnings from their employer. In this context, the internet is considered as the main source of information about heat-related illness in the workplace. Results highlight the need to increase workers' perception of heat stress in the workplace to safeguard their health and productivity. About two-thirds of the sample stated that working in the sun without access to shaded areas, working indoors without adequate ventilation, and nearby fire, steam, and hot surfaces, represent the main injuries' risk factors.


Subject(s)
COVID-19 , Heat Stress Disorders , Occupational Exposure , Occupational Health , COVID-19/epidemiology , Cross-Sectional Studies , Health Personnel , Heat Stress Disorders/epidemiology , Heat Stress Disorders/prevention & control , Heat-Shock Response , Humans , Occupational Exposure/adverse effects , Pandemics , Perception , Pilot Projects , SARS-CoV-2
3.
Am J Public Health ; 111(8): 1443-1447, 2021 08.
Article in English | MEDLINE | ID: covidwho-1456160

ABSTRACT

To investigate how heat-health behaviors changed in summer 2020 compared with previous summers, our community-academic partnership conducted telephone surveys to collect data on cooling behaviors, safety concerns, and preferences for cooling alternatives for 101 participants living in Alabama. Participants indicating they would visit cooling centers declined from 23% in previous summers to 10% in summer 2020. The use of cooling centers and other public spaces may be less effective in reducing heat-related illness because of safety concerns amid the COVID-19 pandemic and police brutality.


Subject(s)
Black or African American/statistics & numerical data , COVID-19/epidemiology , Health Behavior , Heat Stress Disorders/prevention & control , Hot Temperature , Residence Characteristics/statistics & numerical data , Alabama , COVID-19/psychology , Housing , Humans
4.
Med Leg J ; 88(1_suppl): 43-46, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-680501

ABSTRACT

Use of appropriate personal protective equipment is essential for healthcare workers when dealing with patients who have tested positive or are suspected of having Covid-19. Personal protective equipment is uncomfortable at best. In hot countries (like India) or in a hot place of work, its wearers are at a high risk of heat-related illnesses. Once in personal protective equipment a healthcare worker can remain in it for at least 6 h at a stretch. In summer when it is hot and humid, personal protective equipment can cause wearer dehydration, heat exhaustion or heat fatigue. In a severe form, this can result in heat stroke and a collapse while on duty. Preventive measures are needed to protect healthcare workers. This review aims to highlight the efficacy and applicability of personal cooling garments.


Subject(s)
Heat Stress Disorders/prevention & control , Hot Temperature , Occupational Exposure/prevention & control , Personal Protective Equipment/statistics & numerical data , Body Temperature Regulation/physiology , Humans , India , Protective Clothing/statistics & numerical data , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL